Tuesday, January 24, 2012

1201.4711 (Dieter Horns et al.)

Indications for a pair-production anomaly from the propagation of VHE gamma-rays    [PDF]

Dieter Horns, Manuel Meyer
In the recent years, the number of detected very high energy (VHE: E > 100 GeV) gamma-ray sources has increased rapidly. The sources have been observed at redshifts up to z = 0.536 without strong indications for the presence of absorption features in the energy spectra. Absorption is however expected due to pair-production processes of the propagating photons with the photon bath in intergalactic space. Even though this photon density is not well known, lower limits can be firmly set by the resolved emission from galaxy counts. Using this guaranteed background light, we investigate the behaviour of the energy spectra in the transition region from the optically thin to the optically thick regime. Among the sample of 50 energy spectra, 7 spectra cover the the range from optical depth $\tau < 1$ to $\tau > 2$. For these sources, the transition to $\tau > 2$ takes place at widely different energies ranging from 0.4 TeV to 21 TeV. Consistently, in all of these sources, an upturn of the absorption-corrected spectrum is visible at this transition with a combined significance of 4.2 standard deviations. Given the broad range of energies and redshifts covered by the sample, source-intrinsic features are unlikely to explain the observed effect. Systematic effects related to observations have been investigated and found to be not sufficient to account for the observed effect. The pair-production process seems to be suppressed in a similar way as expected in the extension of the standard model by a light (View original: http://arxiv.org/abs/1201.4711

No comments:

Post a Comment