Tuesday, February 19, 2013

1302.4368 (Daniel M. Siegel et al.)

On the magnetorotational instability in relativistic hypermassive neutron stars    [PDF]

Daniel M. Siegel, Riccardo Ciolfi, Abraham I. Harte, Luciano Rezzolla
A differentially rotating hypermassive neutron star (HMNS) is a metastable object which can be formed in the merger of neutron-star binaries. The eventual collapse of the HMNS into a black hole is a key element in generating the physical conditions expected to accompany the launch of a short gamma-ray burst. We investigate the influence of magnetic fields on HMNSs by performing three-dimensional simulations in general-relativistic magnetohydrodynamics. In particular, we provide direct evidence for the occurrence of the magnetorotational instability (MRI) in HMNS interiors. For the first time in simulations of these systems, rapidly-growing and spatially-periodic structures are observed to form with features like those of the channel flows produced by the MRI in other systems. Moreover, the growth time and wavelength of the fastest-growing mode are extracted and compared successfully with analytical predictions. The MRI emerges as an important mechanism to amplify magnetic fields over the lifetime of the HMNS, whose collapse to a black hole is accelerated. The evidence provided here that the MRI can actually develop in HMNSs could have a profound impact on the outcome of the merger of neutron-star binaries and on its connection to short gamma-ray bursts.
View original: http://arxiv.org/abs/1302.4368

No comments:

Post a Comment