Tuesday, February 5, 2013

1302.0235 (R. Hascoët et al.)

Prompt thermal emission in gamma-ray bursts    [PDF]

R. Hascoët, F. Daigne, R. Mochkovitch
GRB spectra appear non-thermal, but recent observations of a few bursts with Fermi GBM have confirmed previous indications from BATSE of the presence of an underlying thermal component. Photospheric emission is indeed expected when the relativistic outflow emerging from the central engine becomes transparent to its own radiation, with a quasi-blackbody spectrum in absence of additional sub-photospheric dissipation. However, its intensity strongly depends on the acceleration mechanism - thermal or magnetic - of the flow. We aim to compute the thermal and non-thermal emissions produced by an outflow with a variable Lorentz factor, where the power injected at the origin is partially thermal (fraction epsilon_th) and partially magnetic (fraction 1-epsilon_th). The thermal emission is produced at the photosphere, and the non-thermal emission in the optically thin regime. Apart from the value of epsilon_th, we want to test how the other model parameters affect the observed ratio of the thermal to non-thermal emission. If the non-thermal emission is made by internal shocks, we self-consistently obtained the light curves and spectra of the thermal and non-thermal components for any distribution of the Lorentz factor in the flow. If the non-thermal emission results from magnetic reconnection we were unable to produce a light curve and could only compare the respective non-thermal and thermal spectra. In the different considered cases, we varied the model parameters to see when the thermal component in the light curve and/or spectrum is likely to show up or, on the contrary, to be hidden. We finally compared our results to the proposed evidence for the presence of a thermal component in GRB spectra. Focussing on GRB 090902B and GRB 10072B, we showed how these observations can be used to constrain the nature and acceleration mechanism of GRB outflows.
View original: http://arxiv.org/abs/1302.0235

No comments:

Post a Comment