Monday, December 24, 2012

1212.5373 (J. E. Truemper et al.)

An accretion model for the anomalous X-ray pulsar 4U 0142+61    [PDF]

J. E. Truemper, K. Dennerl, N. D. Kylafis, Ü. Ertan, A. Zezas
We propose that the quiescent emission of AXPs/SGRs is powered by accretion from a fallback disk, requiring magnetic dipole fields in the range 10^{12}-10^{13} G, and that the luminous hard tails of their X-ray spectra are produced by bulk-motion Comptonization in the radiative shock near the bottom of the accretion column. This radiation escapes as a fan beam, which is partly absorbed by the polar cap photosphere, heating it up to relatively high temperatures. The scattered component and the thermal emission from the polar cap form a polar beam. We test our model on the well-studied AXP 4U 0142+61, whose energy-dependent pulse profiles show double peaks, which we ascribe to the fan and polar beams. The temperature of the photosphere (kT~0.4 keV) is explained by the heating effect. The scattered part forms a hard component in the polar beam. We suggest that the observed high temperatures of the polar caps of AXPs/SGRs, compared with other young neutron stars, are due to the heating by the fan beam. Using beaming functions for the fan beam and the polar beam and taking gravitational bending into account, we fit the energy-dependent pulse profiles and obtain the inclination angle and the angle between the spin axis and the magnetic dipole axis, as well as the height of the radiative shock above the stellar surface. We do not explain the high luminosity bursts, which may be produced by the classical magnetar mechanism operating in super-strong multipole fields.
View original: http://arxiv.org/abs/1212.5373

No comments:

Post a Comment