Wednesday, August 8, 2012

1208.1347 (B. van Soelen et al.)

Anisotropic inverse Compton scattering of photons from the circumstellar disc in PSR B1259-63    [PDF]

B. van Soelen, P. J. Meintjes, A. Odendaal, L. J. Townsend
The gamma-ray binary system PSR B1259-63 consists of a 48 ms pulsar orbiting a Be star. The system is particularly interesting because it is the only gamma-ray binary system where the nature of the compact object is known. The non-thermal radiation from the system is powered by the spin-down luminosity of the pulsar and the unpulsed radiation originates from the stand-off shock front which forms between the pulsar and stellar wind. The Be star/optical companion in the system produces an excess infrared flux from the associated circumstellar disc. This infrared excess provides an additional photon source for inverse Compton scattering. We discuss the effects of the IR excess near periastron, for anisotropic inverse Compton scattering and associated gamma-ray production. We determine the infrared excess from the circumstellar disc using a modified version of a curve of growth method, which takes into account the changing optical depth through the circumstellar disc during the orbit. The model is constrained using archive data and additional mid-IR observations obtained with the VLT during January 2011. The inverse Compton scattering rate was calculated for three orientations of the circumstellar disc. The predicted gamma-ray light curves show that the disc contribution is a maximum around periastron and not around the disc crossing epoch. This is a result of the disc being brightest near the stellar surface. Additional spectroscopic and near-infrared observations were obtained of the system and these are discussed in relation to the possibility of shock heating during the disc crossing epoch.
View original: http://arxiv.org/abs/1208.1347

No comments:

Post a Comment