Tuesday, August 7, 2012

1208.0849 (Daniel Kagan et al.)

Relativistic Magnetic Reconnection in Pair Plasmas in Three Dimensions    [PDF]

Daniel Kagan, Milos Milosavljevic, Anatoly Spitkovsky
We investigate guide-field magnetic reconnection and particle acceleration in relativistic pair plasmas with three-dimensional particle-in-cell (PIC) simulations of a kinetic-scale current sheet in a periodic geometry at low magnetizations. The tearing instability is the dominant mode in the current sheet for all guide field strengths, while the linear kink mode is less important even without guide field. Oblique modes seem to be suppressed entirely. In its nonlinear evolution, the reconnection layer develops a network of interconnected and interacting magnetic flux ropes. As smaller flux ropes merge into larger ones, the reconnection layer evolves toward a three-dimensional, disordered state in which the resulting flux rope segments contain magnetic substructure on plasma skin depth scales. Embedded in the flux ropes, we detect spatially and temporally intermittent sites of dissipation reflected in peaks in the parallel electric field. Magnetic dissipation and particle acceleration persist until the end of the simulations, with simulations with higher magnetization and lower guide field strength exhibiting greater and faster energy conversion and particle energization. At the end of our largest simulation, the particle energy spectrum attains a tail extending to high Lorentz factors that is best modeled with a combination of two additional thermal components. We confirm that the primary energization mechanism is acceleration by the electric field in the X-line region. We discuss the implications of our results for macroscopic reconnection sites, and which of our results may be expected to hold in systems with higher magnetizations.
View original: http://arxiv.org/abs/1208.0849

No comments:

Post a Comment