H. A. Craig, Roger W. Romani
Traditional pulsar polarization sweep analysis starts from the point dipole rotating vector model (RVM) approximation. If augmented by a measurement of the sweep phase shift, one obtains an estimate of the emission altitude (Blaskiewicz, Cordes, & Wasserman). However, a more realistic treatment of field line sweepback and finite altitude effects shows that this estimate breaks down at modest altitude ~ 0.1R_{LC}. Such radio emission altitudes turn out to be relevant to the young energetic and millisecond pulsars that dominate the \gamma-ray population. We quantify the breakdown height as a function of viewing geometry and provide simple fitting formulae that allow observers to correct RVM-based height estimates, preserving reasonable accuracy to R ~ 0.3R_{LC}. We discuss briefly other observables that can check and improve height estimates.
View original:
http://arxiv.org/abs/1206.6131
No comments:
Post a Comment