Wednesday, June 20, 2012

1206.4157 (Feng Yuan et al.)

Numerical Simulation of Hot Accretion Flows (I): A Large Radial Dynamical Range and the Density Profile of Accretion Flow    [PDF]

Feng Yuan, Maochun Wu, Defu Bu
Numerical simulations of hot accretion flow have shown that the mass accretion rate decreases with decreasing radius; consequently the density profile of accretion flow becomes flatter compared to the case of a constant accretion rate. This result has important theoretical and observational implications. However, because of technical difficulties, the radial dynamic range in almost all previous simulations usually spans at most two orders of magnitude. This small dynamical range, combined with the effects of boundary conditions, makes the simulation results suspectable. Especially, the radial profiles of density and accretion rate may not be precise enough to be used to compare with observations. In this paper we present a "two-zone" approach to expand the radial dynamical range from two to four orders of magnitude. We confirm previous results and find that from $r_s$ to $ 10^4r_s$ the radial profiles of accretion rate and density can be well described by $\dot{M}(r)\propto r^s$ and $\rho\propto r^{-p}$. The values of (s, p) are (0.48, 0.65) and (0.4, 0.85), for viscous parameter $\alpha=0.001$ and 0.01, respectively. We have looked up numerical simulation works in the literature and found that the values of $s$ and $p$ are all similar, no matter a magnetic field is included or not and what kind of initial conditions are adopted. The density profile we obtain is in good quantitative agreement with that obtained from the detailed observations and modeling to Sgr A* and NGC 3115. The origin of such a accretion rate profile will be investigated in a subsequent paper.
View original: http://arxiv.org/abs/1206.4157

No comments:

Post a Comment