M. Holler, F. M. Schöck, P. Eger, D. Kießling, K. Valerius, C. Stegmann
We performed a spatially resolved spectral X-ray study of the pulsar wind
nebula (PWN) in the supernova remnant G0.9+0.1. Furthermore we modeled its
nonthermal emission in the X-ray and very high energy (VHE, E > 100 GeV)
gamma-ray regime. Using Chandra ACIS-S3 data, we investigated the east-west
dependence of the spectral properties of G0.9+0.1 by calculating hardness
ratios. We analyzed the EPIC-MOS and EPIC-pn data of two on-axis observations
of the XMM-Newton telescope and extracted spectra of four annulus-shaped
regions, centered on the region of brightest emission of the source. A radially
symmetric leptonic model was applied in order to reproduce the observed X-ray
emission of the inner part of the PWN. Using the optimized model parameter
values obtained from the X-ray analysis, we then compared the modeled inverse
Compton (IC) radiation with the published H.E.S.S. gamma-ray data. The spectral
index within the four annuli increases with growing distance to the pulsar,
whereas the surface brightness drops. With the adopted model we are able to
reproduce the characteristics of the X-ray spectra. The model results for the
VHE gamma radiation, however, strongly deviate from the H.E.S.S. data.
View original:
http://arxiv.org/abs/1201.2618
No comments:
Post a Comment