Thursday, January 5, 2012

0904.2444 (K. Atazadeh et al.)

DGP brane cosmology and quark-hadron phase transition    [PDF]

K. Atazadeh, A. M. Ghezelbash, H. R. Sepangi
In the standard picture of cosmology it is predicted that a phase transition, associated with chiral symmetry breaking after the electroweak transition, has occurred at approximately 10 \mu seconds after the Big Bang to convert a plasma of free quarks and gluons into hadrons. We consider the quark-hadron phase transition in a DGP brane world scenario within an effective model of QCD. We study the evolution of the physical quantities useful for the study of the early universe, namely, the energy density, temperature and the scale factor before, during, and after the phase transition. Also, due to the high energy density in the early universe, we consider the quadratic energy density term that appears in the Friedmann equation. In DGP brane models such a term corresponds to the negative branch (\epsilon=-1) of the Friedmann equation when the Hubble radius is much smaller than the crossover length in 4D and 5D regimes. We show that for different values of the cosmological constant on a brane, \lambda, phase transition occurs and results in decreasing the effective temperature of the quark-gluon plasma and of the hadronic fluid. We then consider the quark-hadron transition in the smooth crossover regime at high and low temperatures and show that such a transition occurs along with decreasing the effective temperature of the quark-gluon plasma during the process of the phase transition.
View original: http://arxiv.org/abs/0904.2444

No comments:

Post a Comment