HAWC collaboration, A. U. Abeysekara, J. A. Aguilar, S. Aguilar, R. Alfaro, E. Almaraz, C. Álvarez, J. de D. Álvarez-Romero, M. Álvarez, R. Arceo, J. C. Arteaga-Velázquez, C. Badillo, A. Barber, B. M. Baughman, N. Bautista-Elivar, E. Belmont, E. Benítez, S. Y. BenZvi, D. Berley, A. Bernal, E. Bonamente, J. Braun, R. Caballero-Lopez, I. Cabrera, A. Carramiñana, L. Carrasco, M. Castillo, L. Chambers, R. Conde, P. Condreay, U. Cotti, J. Cotzomi, J. C. D'Olivo, E. de la Fuente, C. De León, S. Delay, D. Delepine, T. DeYoung, L. Diaz, L. Diaz-Cruz, B. L. Dingus, M. A. Duvernois, D. Edmunds, R. W. Ellsworth, B. Fick, D. W. Fiorino, A. Flandes, N. I. Fraija, A. Galindo, J. L. García-Luna, G. García-Torales, F. Garfias, L. X. González, M. M. González, J. A. Goodman, V. Grabski, M. Gussert, C. Guzmán-Ceron, Z. Hampel-Arias, T. Harris, E. Hays, L. Hernandez-Cervantes, P. H. Hüntemeyer, A. Imran, A. Iriarte, J. J. Jimenez, P. Karn, N. Kelley-Hoskins, D. Kieda, R. Langarica, A. Lara, R. Lauer, W. H. Lee, E. C. Linares, J. T. Linnemann, M. Longo, R. Luna-García, H. Martínez, J. Martínez, L. A. Martínez, O. Martínez, J. Martínez-Castro, M. Martos, J. Matthews, J. E. McEnery, G. Medina-Tanco, J. E. Mendoza-Torres, P. A. Miranda-Romagnoli, T. Montaruli, E. Moreno, M. Mostafa, M. Napsuciale, J. Nava, L. Nellen, M. Newbold, R. Noriega-Papaqui, T. Oceguera-Becerra, A. Olmos Tapia, V. Orozco, V. Pérez, E. G. Pérez-Pérez, J. S. Perkins, J. Pretz, C. Ramirez, I. Ramírez, D. Rebello, A. Rentería, J. Reyes, D. Rosa-González, A. Rosado, J. M. Ryan, J. R. Sacahui, H. Salazar, F. Salesa, A. Sandoval, E. Santos, M. Schneider, A. Shoup, S. Silich, G. Sinnis, A. J. Smith, K. Sparks, W. Springer, F. Suárez, N. Suarez, I. Taboada, A. F. Tellez, G. Tenorio-Tagle, A. Tepe, P. A. Toale, K. Tollefson, I. Torres, T. N. Ukwatta, J. Valdes-Galicia, P. Vanegas, V. Vasileiou, O. Vázquez, X. Vázquez, L. Villaseñor, W. Wall, J. S. Walters, D. Warner, S. Westerhoff, I. G. Wisher, J. Wood, G. B. Yodh, D. Zaborov, A. Zepeda
We present the sensitivity of HAWC to Gamma Ray Bursts (GRBs). HAWC is a very
high-energy gamma-ray observatory currently under construction in Mexico at an
altitude of 4100 m. It will observe atmospheric air showers via the water
Cherenkov method. HAWC will consist of 300 large water tanks instrumented with
4 photomultipliers each. HAWC has two data acquisition (DAQ) systems. The main
DAQ system reads out coincident signals in the tanks and reconstructs the
direction and energy of individual atmospheric showers. The scaler DAQ counts
the hits in each photomultiplier tube (PMT) in the detector and searches for a
statistical excess over the noise of all PMTs. We show that HAWC has a
realistic opportunity to observe the high-energy power law components of GRBs
that extend at least up to 30 GeV, as it has been observed by Fermi LAT. The
two DAQ systems have an energy threshold that is low enough to observe events
similar to GRB 090510 and GRB 090902b with the characteristics observed by
Fermi LAT. HAWC will provide information about the high-energy spectra of GRBs
which in turn could help to understanding about e-pair attenuation in GRB jets,
extragalactic background light absorption, as well as establishing the highest
energy to which GRBs accelerate particles.
View original:
http://arxiv.org/abs/1108.6034
No comments:
Post a Comment