Andrea Sanna, Mariano Mendez, Tomaso Belloni, Diego Altamirano
We analysed all archival RXTE observations of the neutron-star low-mass X-ray binary 4U 1636-53 up to May 2010. In 528 out of 1280 observations we detected kilohertz quasi-periodic oscillations (kHz QPOs), with ~ 65% of these detections corresponding to the so-called lower kHz QPO. Using this QPO we measured, for the first time, the rate at which the QPO frequency changes as a function of QPO frequency. For this we used the spread of the QPO frequency over groups of 10 consecutive measurements, sampling timescales between 320 and 1600 s, and the time derivative of the QPO frequency over timescales of 32 to 160 s. We found that: (i) Both the QPO-frequency spread and the QPO time derivative decrease by a factor ~ 3 as the QPO frequency increases. (ii) The average value of the QPO time derivative decreases by a factor of ~ 2 as the timescale over which the derivative is measured increases from less than 64 s to 160 s. (iii) The relation between the absolute value of the QPO time derivative and the QPO frequency is consistent with being the same both for the positive and negative QPO-frequency derivative. We show that, if either the lower or the upper kHz QPO reflects the Keplerian frequency at the inner edge of the accretion disc, these results support a scenario in which the inner part of the accretion disc is truncated at a radius that is set by the combined effect of viscosity and radiation drag.
View original:
http://arxiv.org/abs/1206.0182
No comments:
Post a Comment