Philip F. Hopkins, Thomas J. Cox, Lars Hernquist, Desika Narayanan, Christopher C. Hayward, Norman Murray
We use simulations with realistic models for stellar feedback to study galaxy mergers. These high resolution (1 pc) simulations follow formation and destruction of individual GMCs and star clusters. The final starburst is dominated by in situ star formation, fueled by gas which flows inwards due to global torques. The resulting high gas density results in rapid star formation. The gas is self gravitating, and forms massive (~10^10 M_sun) GMCs and subsequent super-starclusters (masses up to 10^8 M_sun). However, in contrast to some recent simulations, the bulk of new stars which eventually form the central bulge are not born in superclusters which then sink to the center of the galaxy, because feedback efficiently disperses GMCs after they turn several percent of their mass into stars. Most of the mass that reaches the nucleus does so in the form of gas. The Kennicutt-Schmidt law emerges naturally as a consequence of feedback balancing gravitational collapse, independent of the small-scale star formation microphysics. The same mechanisms that drive this relation in isolated galaxies, in particular radiation pressure from IR photons, extend over seven decades in SFR to regulate star formation in the most extreme starbursts (densities >10^4 M_sun/pc^2). Feedback also drives super-winds with large mass loss rates; but a significant fraction of the wind material falls back onto the disks at later times, leading to higher post-starburst SFRs in the presence of stellar feedback. Strong AGN feedback is required to explain sharp cutoffs in star formation rate. We compare the predicted relic structure, mass profile, morphology, and efficiency of disk survival to simulations which do not explicitly resolve GMCs or feedback. Global galaxy properties are similar, but sub-galactic properties and star formation rates can differ significantly.
View original:
http://arxiv.org/abs/1206.0011
No comments:
Post a Comment