Friday, February 24, 2012

1202.5256 (Grzegorz Kowal et al.)

Particle Acceleration in Turbulence and Weakly Stochastic Reconnection    [PDF]

Grzegorz Kowal, Elisabete M. de Gouveia Dal Pino, Alex Lazarian
Fast particles are accelerated in astrophysical environments by a variety of processes. Acceleration in reconnection sites has attracted the attention of researchers recently. In this letter we analyze the energy distribution evolution of test particles injected in three dimensional (3D) magnetohydrodynamic (MHD) simulations of different magnetic reconnection configurations. When considering a single Sweet-Parker topology, the particles accelerate predominantly through a first-order Fermi process, as predicted in previous work (de Gouveia Dal Pino & Lazarian, 2005) and demonstrated numerically in Kowal, de Gouveia Dal Pino & Lazarian (2011). When turbulence is included within the current sheet, the acceleration rate, which depends on the reconnection rate, is highly enhanced. This is because reconnection in the presence of turbulence becomes fast and independent of resistivity (Lazarian & Vishniac, 1999; Kowal et al., 2009) and allows the formation of a thick volume filled with multiple simultaneously reconnecting magnetic fluxes. Charged particles trapped within this volume suffer several head-on scatterings with the contracting magnetic fluctuations, which significantly increase the acceleration rate and results in a first-order Fermi process. For comparison, we also tested acceleration in MHD turbulence, where particles suffer collisions with approaching and receding magnetic irregularities, resulting in a reduced acceleration rate. We argue that the dominant acceleration mechanism approaches a second order Fermi process in this case.
View original: http://arxiv.org/abs/1202.5256

No comments:

Post a Comment