Thursday, February 23, 2012

1202.4773 (Maxim Eingorn et al.)

Significance of tension for gravitating masses in Kaluza-Klein models    [PDF]

Maxim Eingorn, Alexander Zhuk
In this report, we consider the six-dimensional Kaluza-Klein models with spherical compactification of the internal space. Here, we investigate the case of bare gravitating compact objects with the dustlike equation of state $\hat p_0=0$ in the external (our) space and an arbitrary equation of state $\hat p_1=\Omega \hat \varepsilon$ in the internal space. These models satisfy the classical gravitational tests. However, we show that gravitating masses acquire effective relativistic pressure in the external space. Such pressure contradicts the observations of compact astrophysical objects (e.g., the Sun). The equality $\Omega =-1/2$ (i.e. tension) is the only possibility to preserve the dustlike equation of state in the external space. Therefore, tension plays a crucial role for the considered models.
View original: http://arxiv.org/abs/1202.4773

No comments:

Post a Comment