1105.6342 (G. Morlino et al.)
G. Morlino, D. Caprioli
Very recent gamma-ray observations of G120.1+1.4 (Tycho's) supernova remnant
(SNR) by Fermi-LAT and VERITAS provided new fundamental pieces of information
for understanding particle acceleration and non-thermal emission in SNRs. We
want to outline a coherent description of Tycho's properties in terms of SNR
evolution, shock hydrodynamics and multi-wavelength emission by accounting for
particle acceleration at the forward shock via first order Fermi mechanism. We
adopt here a quick and reliable semi-analytical approach to non-linear
diffusive shock acceleration which includes magnetic field amplification due to
resonant streaming instability and the dynamical backreaction on the shock of
both cosmic rays (CRs) and self-generated magnetic turbulence. We find that
Tycho's forward shock is accelerating protons up to at least 500 TeV,
channelling into CRs about the 10 per cent of its kinetic energy. Moreover, the
CR-induced streaming instability is consistent with all the observational
evidences indicating a very efficient magnetic field amplification (up to ~300
micro Gauss). In such a strong magnetic field the velocity of the Alfv\'en
waves scattering CRs in the upstream is expected to be enhanced and to make
accelerated particles feel an effective compression factor lower than 4, in
turn leading to an energy spectrum steeper than the standard prediction
{\propto} E^-2. This latter effect is crucial to explain the GeV-to-TeV
gamma-ray spectrum as due to the decay of neutral pions produced in nuclear
collisions between accelerated nuclei and the background gas. The
self-consistency of such an hadronic scenario, along with the fact that the
concurrent leptonic mechanism cannot reproduce both the shape and the
normalization of the detected the gamma-ray emission, represents the first
clear and direct radiative evidence that hadron acceleration occurs efficiently
in young Galactic SNRs.
View original:
http://arxiv.org/abs/1105.6342
No comments:
Post a Comment