1304.6430 (A. Patruno et al.)
A. Patruno, C. D'Angelo
The dynamics of the plasma in the inner regions of an accretion disk around accreting millisecond X-ray pulsars is controlled by the magnetic field of the neutron star. The interaction between an accretion disk and a strong magnetic field is not well-understood, particularly at low accretion rates (the so-called ``propeller regime'). This is due in part to the lack of clear observational diagnostics to constrain the physics of the disk-field interaction. Here we associate the strong ~1 Hz modulation seen in the accreting millisecond X-ray pulsar NGC 6440 X-2 with an instability that arises when the inner edge of the accretion disk is close to the corotation radius (where the stellar rotation rate matches the Keplerian speed in the disk). A similar modulation has previously been observed in another accreting millisecond X-ray pulsar (SAX J1808.4-3658) and we suggest that the two phenomena are related and that this may be a common phenomenon among other magnetized systems. Detailed comparisons with theoretical models suggest that when the instability is observed, the interaction region between the disk and the field is very narrow -- of the order of 1 km. Modelling further suggests that there is a transition region (~1-10 km) around the corotation radius where the disk-field torque changes sign from spin up to spin down. This is the first time that a direct observational constraint has been placed on the width of the disk-magnetosphere interaction region.
View original:
http://arxiv.org/abs/1304.6430
No comments:
Post a Comment