Oleg E. Kalashev, Alexander Kusenko, Warren Essey
The observed spectra of distant blazars are well described by secondary gamma rays produced in line-of-sight interactions of cosmic rays with background photons. In the absence of the cosmic-ray contribution, these spectra would appear surprisingly hard, but the cosmic ray interactions generate very high energy gamma rays relatively close to the observer, and the spectra agree with the data. The same interactions of cosmic rays are expected to produce a flux of neutrinos with energies peaked around 1 PeV. We show that the predicted diffuse isotropic neutrino background from many distant sources can explain the neutrino events recently detected by the IceCube experiment. We also find that the flux from any individual nearby source is insufficient to account for these events. The narrow spectrum around 1 PeV implies that a typical active galactic nucleus can accelerate protons to EeV energies.
View original:
http://arxiv.org/abs/1303.0300
No comments:
Post a Comment