Ben Gompertz, Paul O'Brien, Graham Wynn, Antonia Rowlinson
Extended emission gamma-ray bursts are a subset of the `short' class of burst which exhibit an early time rebrightening of gamma emission in their light curves. This extended emission arises just after the initial emission spike, and can persist for up to hundreds of seconds after trigger. When their light curves are overlaid, our sample of 14 extended emission bursts show a remarkable uniformity in their evolution, strongly suggesting a common central engine powering the emission. One potential central engine capable of this is a highly magnetized, rapidly rotating neutron star, known as a magnetar. Magnetars can be formed by two compact objects coallescing, a scenario which is one of the leading progenitor models for short bursts in general. Assuming a magnetar is formed, we gain a value for the magnetic field and late time spin period for 9 of the extended emission bursts by fitting the magnetic dipole spin-down model of Zhang & Meszaros (2001). Assuming the magnetic field is constant, and the observed energy release during extended emission is entirely due to the spin-down of this magnetar, we then derive the spin period at birth for the sample. We find all birth spin periods are in good agreement with those predicted for a newly born magnetar.
View original:
http://arxiv.org/abs/1302.3643
No comments:
Post a Comment