Gabrijela Zaharijas, Jan Conrad, Alessandro Cuoco, Zhaoyu Yang
We study diffuse gamma-ray emission at intermediate Galactic latitudes measured by the Fermi Large Area Telescope with the aim of searching for a signal from dark matter annihilation or decay. In the absence of a robust dark matter signal, we set conservative dark matter limits requiring that the dark matter signal does not exceed the observed diffuse gamma-ray emission. A second set of more stringent limits is derived based on modeling the foreground astrophysical diffuse emission. Uncertainties in the height of the diffusive cosmic-ray halo, the distribution of the cosmic-ray sources in the Galaxy, the cosmic-ray electron index of the injection spectrum and the column density of the interstellar gas are taken into account using a profile likelihood formalism, while the parameters governing the cosmic-ray propagation have been derived from fits to local cosmic-ray data. The resulting limits impact the range of particle masses over which dark matter thermal production in the early Universe is possible, and challenge the interpretation of the PAMELA/Fermi-LAT cosmic ray anomalies as annihilation of dark matter.
View original:
http://arxiv.org/abs/1212.6755
No comments:
Post a Comment