Roman Gold, Sebastiano Bernuzzi, Marcus Thierfelder, Bernd Bruegmann, Frans Pretorius
Neutron star binaries offer a rich phenomenology in terms of gravitational waves and merger remnants. However, most general relativistic studies have been performed for nearly circular binaries, with the exception of head-on collisions. We present the first numerical relativity investigation of mergers of eccentric equal-mass neutron-star binaries that probes the regime between head-on and circular. In addition to gravitational waves generated by the orbital motion, we find that the signal also contains a strong component due to stellar oscillations (f-modes) induced by tidal forces, extending a classical result for Newtonian binaries. The merger can lead to rather massive disks on the order of 10% of the total initial mass.
View original:
http://arxiv.org/abs/1109.5128
No comments:
Post a Comment