Enrico Barausse, Carlos Palenzuela, Marcelo Ponce, Luis Lehner
Scalar-tensor theories of gravity are among the most natural phenomenological alternatives to General Relativity, because the gravitational interaction is mediated by a scalar degree of freedom, besides the gravitons. In regions of the parameter space of these theories where constraints from both solar system experiments and binary-pulsar observations are satisfied, we show that binaries of neutron stars present marked differences from General Relativity in both the late-inspiral and merger phases. These strong-field effects are difficult to reproduce in General Relativity, even with an exotic equation of state. We comment on the relevance of our results for the upcoming Advanced LIGO/Virgo detectors.
View original:
http://arxiv.org/abs/1212.5053
No comments:
Post a Comment