Thursday, June 14, 2012

1206.2841 (A. Mosallanezhad et al.)

Structure of ADAFs in a general large-Scale B-field: The role of wind and thermal conduction    [PDF]

A. Mosallanezhad, M. Khajavi, S. Abbassi
We have explored the structure of hot flow bathed in a general large-scale magnetic field. The importance of outflow and thermal conduction on the self-similar structure of a hot accretion flows has been investigated. We consider the additional magnetic parameters $ \beta_{r,\varphi,z}\big[= c^2_{r,\varphi,z}/(2 c^2_{s}) \big] $, where $ c^2_{r,\varphi,z} $ are the Alfv$\acute{e}$n sound speeds in three direction of cylindrical coordinate. In comparison to the accretion disk without winds, our results show that the radial and rotational velocities of the disk become faster however it become cooler because of the angular momentum and energy flux which are taking away by the winds. but thermal conduction opposes the effect of winds not only decrease the rotational velocity but also increase the radial velocity as well as the sound speed of the disk. In addition we study the effect of global magnetic field on the structure of the disk. Our numerical results show that all components of magnetic field can be important and they have a considerable effect on velocities and vertical structure of the disk.
View original: http://arxiv.org/abs/1206.2841

No comments:

Post a Comment