Thursday, May 17, 2012

1205.3751 (Paulo C. C. Freire et al.)

Tests of the universality of free fall for strongly self-gravitating bodies with radio pulsars    [PDF]

Paulo C. C. Freire, Michael Kramer, Norbert Wex
In this paper, we review tests of the strong equivalence principle (SEP) derived from binary pulsar data. The extreme difference in binding energy between both components and the precise measurement of the orbital motion provided by pulsar timing allow the only current precision SEP tests for strongly self-gravitating bodies. We start by highlighting why such tests are conceptually important. We then review previous work where limits on SEP violation are obtained with an ensemble of wide binary systems with small eccentricity orbits. Then we propose a new SEP violation test based on the measurement of the variation of the orbital eccentricity de/dt. This new method has the following advantages: a) unlike previous methods it is not based on probabilistic considerations, b) it can make a direct detection of SEP violation, c) the measurement of de/dt is not contaminated by any known external effects, which implies that this SEP test is only restricted by the measurement precision of de/dt. In the final part of the review, we conceptually compare the SEP test with the test for dipolar radiation damping, a phenomenon closely related to SEP violation, and speculate on future prospects by new types of tests in globular clusters and future triple systems.
View original: http://arxiv.org/abs/1205.3751

No comments:

Post a Comment