Ross P. Church, Chunglee Kim, Andrew J. Levan, Melvyn B. Davies
We consider a popular model for long-duration gamma-ray bursts, in which the progenitor star, a stripped helium core, is spun up by tidal interactions with a black- hole companion in a compact binary. We perform population synthesis calculations to produce a representative sample of such binaries, and model the effect that the companion has on material that falls back on to the newly-formed black hole. Taking the results of hydrodynamic models of black-hole formation by fallback as our starting point, we show that the companion has two main effects on the fallback process. First, a break forms in the accretion curve at around 10 000 s. Secondly, subsequent to the break, we expect to see a flare of total energy around 0.1 foe. We predict that the break time is set largely by the semi-major axis of the binary at the time of explosion, and that this correlates negatively with the flare energy. Although comparison with observations is non-trivial, we show that our predicted break times are comparable to those found in the X-ray light curves of canonical long-duration gamma-ray bursts. Similarly, the flare properties that we predict are consistent with the late-time flares observed in a sub-sample of bursts.
View original:
http://arxiv.org/abs/1205.0552
No comments:
Post a Comment