J. H. K. Wu, A. K. H. Kong, R. H. H. Huang, J. Takata, P. H. T. Tam, E. M. H. Wu, K. S. Cheng
We report the discovery of pulsed {\gamma}-ray emission and X-ray emission
from the black widow millisecond pulsar PSR J2051-0827 by using the data from
the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope and
the Advanced CCD Imaging Spectrometer array (ACIS-S) on the Chandra X-ray
Observatory. Using 3 years of LAT data, PSR J2051-0827 is clearly detected in
{\gamma}-ray with a signicance of \sim 8{\sigma} in the 0.2 - 20 GeV band. The
200 MeV - 20 GeV {\gamma}-ray spectrum of PSR J2051-0827 can be modeled by a
simple power- law with a photon index of 2.46 \pm 0.15. Significant (\sim
5{\sigma}) {\gamma}-ray pulsations at the radio period were detected. PSR
J2051-0827 was also detected in soft (0.3-7 keV) X-ray with Chandra. By
comparing the observed {\gamma}-rays and X-rays with theoretical models, we
suggest that the {\gamma}-ray emission is from the outer gap while the X-rays
can be from intra-binary shock and pulsar magnetospheric synchrotron emissions.
View original:
http://arxiv.org/abs/1201.5980
No comments:
Post a Comment